MMS (Masonry MicroStructures database) - A 3D masonry microstructures database for advancing numerical research on irregular stone masonry structures

Category

Contribute

Institutions

EPFL

Data type

Microstructure database

Field

Materials Science

Researchers

Shah, Mati Ullah

Abstract

Stone masonry is an eco-friendly construction material, but its use has declined due to its vulnerability to earthquakes, mainly because of the poor arrangement of its microstructure. The microstructure includes the shape, size, and arrangement of stone units, which vary based on geographic, temporal, and material factors. Current building codes cannot fully account for this variability, and experimental studies are costly and impractical due to the diversity of masonry typologies. Numerical studies offer a solution, but creating realistic microstructures for modeling irregular stone masonry is complex and time-consuming. As a result, simplified microstructures are often used in simulations, which fail to capture the complexities of irregular masonry walls. To address this challenge, we have developed a 3D masonry microstructures database ready to use in numerical simulations. To enhance accessibility and usability, this project aims to create a web-based platform hosting this curated database of 3D microstructures and their geometric indices. The proposed web-based platform will also feature a tool for evaluating masonry quality using the Masonry Quality Index (MQI) from 2D images, promoting the preservation of historic structures and sustainable construction practices. Additionally, the platform will enable researchers to contribute and document new 3D microstructures, fostering collaboration and advancing numerical research on stone masonry.

Scroll to Top